
UNIQUENESS CONDITIONS AND METHOD OF SOLUTION 

OF THE COEFFICIENT INVERSE PROBLEM OF THERMAL CONDUCTIVITY 

O. M. Alifanov and M. V. Klibanov UDC 536.26+517.946 

The uniqueness conditions are formulated for the coefficient problem of thermal 
conductivity and an approach to devising the algorithm for solving it is pre- 
sented. 

Consider the inverse thermal conductivity problem (ITCP), which consists in determining 
one of the coefficients of the thermal conductivity equation with respect to the known tem- 
perature T(x, m) at the instant of time T = t = const > 0, and the assigned values of the tem- 
perature and the thermal flux density at the region boundary at any instant of time. 

~e uniqueness of solution of such ITCPs for linear and nonlinear equations was investi- 
gated earlier in [1-12]. For the nonlinear case, uniqueness theorems "in the small" were ob- 
tained in [5-6], while the uniqueness theorems in [7] were obtained under the assumption that 
the sought coefficient belongs to a certain contiguity class. We shall derive below the 
uniqueness theorem "in the large." It is required basically that the sought coefficient be- 
long to class C (more detailed presentation is given below). This theorem is proved by means 
of roughly the same method as the one used for proving Theorem 4 in [I0] (see also remarks at 
the end of [i0, ii]). In contrast to [i0], where the problem is considered in the half-space 
(see also [8]), we shall consider the end section, which involves additional difficulties re- 
suiting from the consideration of conditions at its other end. The temperature and density 
of the the~al flux must be assigned at both ends of the section. 

The second part of this article provides an approach to the numerical realization of the 
solution. 

Consider the following ITCP. It is necessary to find the functions c(T) and T(x, ~r) 
from the conditions 

c( r )  & & ~ . ~  + g ( r )  +Q(T),  xE(O, b), rE(O, rm): (1) 

T(x, O)= ~(x), xE(O, b); (2) 

7"(x, t )= F(x), t =  constE(O, %), xE(O, b); (3) 

aT I = q)('l~), T~(O, "I'm); (5) 
aX ]x=~ 

T (0, ~) ----- g (% ~: E (0, "m); (6) 

_ ~ 0&~ x =0 = ~ ('h "~ E (0, "~). (7) 

Here X(T), K(T), Q(T), ~(x), F(x), f(T), q(~), g(x), and ~(T) are known functions. 

The above statement of the ITCP can have practical applications, for instance in using 
nondestructive methods for determining or monitoring the thermophysical characteristics of 
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materials�9 We encounter fairly often situations where placement of thermal data units inside 
the solid under investigation (for instance, a part of a certain structure) is impossible or 
very difficult, but measurements of the temperature and the thermal flux density at its sur- 
face are possible�9 Additional conditions concerning the temperature distribution in the 
solid F(x) at the instant of time t > 0 involve, of course, certain difficulties, but, in 
many cases, they can be taken into account in performing experiments. In particular, we shall 
consider the case where k = Q = 0. Assume that the boundary planes of a plate are thermo- 
statically controlled at different temperature levels during the time 0 < T < t, while the 
duration of this interval t is based on the condition that the temperature field has reached 
steady-state conditions. Then, if during the period 0 < T < t it can be considered that 
%(T) = %* = const, a linear temperature distribution F(x) that is known beforehand will be 
established along the plate thickness. 

Remark i. As follows from the theorem given below, the function ~(x) can be considered, 
theoretically, to be unknown. As stated, problem (1)-(7) is assumed to have been assigned 
for two reasons: 

I) Thermophysical experiments can usually be organized so that the initial temperature of 
the solid T(x, 0) is a known constant; 

2) exclusion of one of the functions [~(x) in our case] from the number of the quantities 
to be determined improves considerably the conditionality of the computational form of the in- 
verse problem and markedly increases the accuracy of its solution�9 

Let us write the uniqueness theorem for problem (1)-(7). We first introduce some nota- 
tion. For T m > 0, Q~m = (0, b) • (0, Tm) , and Qt,~ m = (0, b) • (t, Tm). For any function 

u(x, T) defined over the set QT m or at its boundary, o(u) is the region of values of the 

function u, while at(u) is the set of values of the function u(x, T) when (x, T) run through 

the set Qt, T m- By G(Q:Tm) or, correspondingly, G(Qt,Tm) we denote the set of functions u(x, 

T) having in QTm (or correspondingly in Qt, T m) the derivatives uT, Ux, Uxx , UTx, UTxx, and 

which are continuous in QTm (Qt,Tm)' where the bar over the set symbol denotes closure, i.e., HTT~ 

QTm = [0, b] x [0, Tm] and Qt,Tm [0, b] • It, r m] 

THEOREM i. Assume that, in (1)-(7), % > %o, c m co, %o = const > 0, Co = const > 0, the 
function %(z) is continuously differentiable~ and the functions c(z), K(z), and Q(z) are con- 
tinuous in the domain of their definition. We also assume that the function T(x, T) is strict- 
ly monotonic with respect to x and T in Qt,T m. 

. laT~ 
m! - -  ~ O, 

Qt.~l aXl (8) 

inf aT I Or,Tin ~ > O. (9) 

We can then find not more than one vector function (c, T)EC(~(T))X G(Qt,~ m) satisfying (i)- 
(7), such that T6G(~). 

Remark 2, It is understood here that T6G(Q~m), but the field is uniquely defined only 
in Qt,T m. If, instead of (8) and (9), we require that infl0T/ax]>0Q~m and QTminflaT/a~I>0 ' the func- 

tion T(x, T) can then be defined in QTm, while c(z) can be defined for z@o(T), and the func- 

tion E(x) is considered to be unknown in all cases. The domain at(T) [o(T) in the second 
case] is not known beforehand. It is determined in the process of solving the problem. 

We shall indicate the basic points of the proof. Without loss of generality, we can as- 
sume that, in Qt,Tm, 

0T 
O - - - - ~ - - ~ > ~ > O ,  = = const. (i0) 

We introduce a new independent variable and function by effecting the substitution (T, 
x) +-+ (w, z) in accordance with T(w(z, T), T) = z, Using the theorem concerning implicit 
functions, we obtain, after simple transformations, 
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z(z) 
c (z) ~ ,  = ~ w= -f- Q (z) w~ + z '  (z) + K (z), 

[Q.I z 
(11) 

w (z, t) : :  p (z), rain (F (x)) -~  z ~ m a x  (F (x)), 
[o, b] [o,b] 

~{z=,q-~) -= b, 

(12) 

(13) 

a~i := z ( [ ( '0 )  1 (14) 

(15) 

(16) 

g ( ' O < z < [ ( ~ ) ,  t < ~ < ~ m .  (17) 

The function p(z) in (12) is known. It constitutes the solution of the functional equa- 
tion F(p(z)) = z. 

In view of the continuity of the OT/Ox function, we consider that (ii) is satisfied for 
T@[t--~,Tm] and x ~[0, b] for a certain small e > 0. The relationships (11)-(17) are thus 

satisfied in the region (with mobile boundaries) 

g(~)<z<[(~), t--~<~<~m (is) 

Assume that there are two solutions of problem (1)-(7). There are then two solutions of 
problem (II)-(17): (c,, w,) and (c2, w=). With regard to the function v = w, -- w2, we can 
obtain in domain (18) a linear equation containing c = c, -- c2 [13]. We then apply the meth- 
od of Carlemann estimates [13]. The detailed proof is very cumbersome and is not given here. 
Some details are given in [ii]. 

THEOREM 2. Theorem 1 remains valid also in the case where the function K(T) or Q(T) is 
sought along with c(T). However, condition (9) in formulating the theorem must be rejected 
and the function K(Q) substituted for the function c. If we assume that g(r) = const is a 
known number in (6), the function ~(T) in (7) can be considered to be unknown and, instead of 
(8), it must be stipulated that infOT/Ox>O, i.e., that the function T(x, T) increase strict- 

QI, ~ m  

ly monotonically with respect to x. 

The proof of Theorem 2 is provided by using the same method. 

Remark 3. Conditions (8) and (9) for the monotony of the function T(x, r) can readily 
be secured under actual conditions. Theoretically, it is necessary to impose additional con- 
ditions on the functions appearing in (1)-(7) in order to utilize the maximum principle. 

Remark 4. Similar theorems also are valid if one or both boundaries of the region are 
mobile, i.e., if ~2(r) < x < ~I(T),T~(0, Tm),~I and ~2~C~[0, Tm] in (1)-(6). 

The inverse problem (1)-(7) is improperly stated, and its solution must be regularized 
in some way [14, 15]. 

The regularizing algorithm for the inverse problem under consideration can be developed 
on the basis of iteration regularization [16]. According to this method, the following itera- 
tion algorithm is formed for solving the operator equation Au = f, u6U,[@F (U and F are 
normalized spaces): 

u ~ + l =  FA(U k, A[, h), k =  O, 1 . . . . .  

which minimizes the rate of deviation of the left-hand side of the equation from a straight 
line in the metrics of space F: 

J (u) = IIA~u . -  f8 I1~, 

and the iteration number is used as the regularization parameter (here hf = f6 -- f is the 
"noise" in the right-hand side, and h is the parameter of operator approximation). It was 
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found that the gradient methods of steepest descent, minimum discrepancies, and conjugate 
gradients can be used as the iteration algorithms. The number of the last iteration in these 
methods is determined with respect to the discrepancy criterion: 

k* : J (uh*) ~ 5 ~, 5 = IIA/llr 

under the assumption that the approximation error is much smaller than the error in assigning 
the right-hand side. 

For the case of a linear operator A and Hilbert spaces U and F, there were obtained in 
[17] theorems concerning the regularizability of the gradient methods and the stability con- 
ditions of the corresponding approximations in using the discrepancy criterion. For non- 
linear problems, to which statement (1)-(7) belongs, this approach was substantiated by means 
of numerical simulation [16, 18-20]. 

In correspondence with the uniqueness conditions, we shall assume that the function c(T) 
is continuous and use this assumption as a priori information. This condition is taken into 
account by choosing a suitable class of functions, among which the required representative is 
sought, namely, we shall assume that c(T) belongs to the Sobolev space W~ (it is known that 

We shall further assume that the function c(T) is unknown throughout the region o(T) [no 
special difficulties are encountered in passing to the case where c(T) is known for the T(x, 
r) values corresponding to (x, T)@(0, b)X (0, t),and is unknown only in the at(T) region]. 

The smallest and the largest temperature values for the o(T) range in the case of a 
homogeneous thermal conductivity equation with the assigned functions ~(x), g(T), and f(r) 
are known beforehand, which follows from the maximum principle. For instance, assume that 
3T/3x < 0 for all x~(0, ~m), and 3T/3~ > 0 for all xE(O,b). Then, using the inverse problem 
solution, it is necessary to determine the relationship c(T) in the temperature range (To, 
TM) , where To = f(0), T M = g(Tm). 

We introduce the discrepancy functional in the form of the sum of the temperature devia- 
tions TIo = T(c(T), 0, T), T]b = T(c(T), b, T), and Tlt= T(c(T), x, t), from the functions 
g(~), f(T), and F(x), respectively, in the metrics of space L~: 

Tm ~m b 

S (c) = S [TIo - -  g (,)]=d, -]- J' [Tlb - -  f (g)]~d, q- S [TIt - -  F ( x ) ] 2 d x .  
0 0 0 

Here T(c(T), x, T) is the solution of the boundary-value problem of thermal conductivity in 
the region QTm for the assigned functions E(x), ~(z) , and ~(T) and a certain function c(T). 

Following the method of iteration regularization and assuming that the function ~(T) is 
known exactly, we shall consider the extremum problem of determining c(T) within the framework 
of the (1)-(7) model on the basis of the condition 

min [J (c) -- 5~], 

where 82j is the allowable level of discrepancy minimization, which is determined by the 
errors in assigning g(T), f(T), and F(x). 

We shall seek the solution c(T) in parametrized form: 

n 

c(T) = ~c ,~b(T) ,  
1=1 

where {nj(T)}1 his a system of basis functions, and {cj}na are the sought coefficients. 

Cubic V~splines can be used as nj(T). The functions of this class form a subspace in 
the space Wu2 (U ! 3) and are convenignt for solving ITCPs [18, 19]. 

Thus, the extremum problem is related to the determination of the vector 26Rn on the 
basis of the conditions 

Tm ~m 

rain [](c) --5~], ~r (c) =: J" [~'Lo--g(x)] ~d'~ + .f [ 'F lb-  f ('0i ~d'~ + 
- /  0 0 
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b 

+ .~ [~f],--F(x)] ~dx, TIt = T(~(T),  l, ~), l i t  = T (c (T) ,  x, t). 
0 

The iteration determination of the sought quantities is performed according to the al- 
gorithm 

~k+l ~ - - ~ k ,  k = 0 ,  I . . . .  , k*, (19) 

where k* : J(~k,) ~ ~27, 

The direction of descent p must be chosen so as to secure the convergence of approxima- 
tions at the number of space E~= [21]. The coefficients ~k in expression (19) are calculated 
at each iteration on the basis of the condition 

In o b t a i n i n g  an e s t i m a t e  of  the  sought  f u n c t i o n  c ( T ) ,  we c a l c u l a t e  the co r r e spond ing  
temperature field T(x, T). 

Remark 5. We have considered above the overdetermined statement of the ITCP. We shall 
now assume that there is no information on ~(x). In this case, considering F(x) as the ini- 

tial condition and assigning the target functional in the form 9(c) - [m[TI0--g(T)]~d~ - 

[TIb - -  [ (~)]2dT, we can f i n d ,  on the  b a s i s  of  the  above method, a p a i r  of  f u n c t i o n s ,  c(T) 

and T(x,  T),  wi th  the  d e f i n i t i o n  domains o t (T )  and Qt,~m, r e s p e c t i v e l y .  

The d e s c r i b e d  approach to w r i t i n g  an a l g o r i t h m  f o r  s o l v i n g  c o e f f i c i e n t  ITCPs can a l s o  
be g e n e r a l i z e d  to  i n c l u d e  o t h e r  g r a d i e n t  methods s a t i s f y i n g  the c o n d i t i o n  of  r e g u l a r i z a b i l -  
i t y  wi th  r e s p e c t  to  the  number of  i t e r a t i o n s  as we l l  as i n v e r s e  problems of  de t e rmin ing  the  
v e c t o r  f u n c t i o n s  {K(T), T(x ,  T)} and {Q(T), T(x,  r ) } .  
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AXISYMMETRIC BENDING OF A HEATED CIRCULAR PLATE ON AN ELASTIC BASE 

WITH ACCOUNT OF ITS DEFORMABILITY OVER ITS THICKNESS 

M. D. Martynenko and E. A. Svlrskii UDC 539.3 

The axisymmetric problem is solved for the bending of a circular plate on a 
heated half-space under the action of a distributed load and a temperature 
field. 

One of the founders of the theory of bending of beams and plates on an elastic base is 
Prektor [i, 2], who, in 1919, formulated a computational process for the reduction of the 
problem of bending of a narrow beam on a half-space to the solution of an integrodifferential 
equation taking account of the elastic deformations of contiguous bodies. Because the series 
of solutions that he obtained proved to be weakly convergent [2], another variant of this 
method was formulated, based on integral account of the crumpling of a beam over its thick- 
ness [3, 4]. As was shown by these calculations, taking account of the crumpling of a beam 
over thickness leads to a considerable redistribution of the reaction pressure under the base 
of the beam. Below, we give a further development of Proktor's method applied to circular 
plates resting on an elastic half-space. 

i. We consider a circular plate of radius ~, on the bounding planes of which the ex- 
ternal loads and temperature are constant: 

cry------q, T = T , = c o n s t  for z = - - h ,  

try-------p, T----T~----const for z = h .  
(I) 
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